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Second-order Cone Program (SOCP)

• In the simplest case, SOCP has a standard form

min cTx

s.t. Ax = b,

x ∈ K

where K = { x ∈ R
n+1 |

√

∑n
i=1

x2i ≤ xn+1 } is an SOC.

• A more general (and useful) standard SOCP formulation has

K = K1 ×K2 × . . .×Km

where Ki is an SOC.
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A very general way (or most?) of writing an SOCP:

min cTx

s.t. ‖Aix+ bi‖2 ≤ fTi x+ di, i = 1, . . . , L

Fx = g

The inequality constraints are generalized inequalities

‖Aix+ bi‖2 ≤ fTi x+ di ⇐⇒





Aix+ bi

fTi x+ di



 �Ki
0,

where each Ki denotes an SOC of appropriate dimension.
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Some class of QCQPs may be regarded as a special case of the SOCP.

For example, consider a QCQP in the form of

min ‖A0x+ b0‖22
s.t. ‖Aix+ bi‖22 ≤ ri, i = 1, . . . , L

The problem can be reformulated as

min t

s.t. ‖A0x+ b0‖2 ≤ t

‖Aix+ bi‖2 ≤ √
ri, i = 1, . . . , L

which is an SOCP.
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Robust Linear Programming

Recall the standard LP problem:

min cTx

s.t. aTi x ≤ bi, i = 1, . . . ,m

Consider that there is uncertainty in ai:

ai ∈ { āi + Piu | ‖u‖2 ≤ 1 } , Ei

where we only have knowledge of āi & Pi.
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Worst-Case Robust LP formulation:

min cTx

s.t. aTi x ≤ bi, for all ai ∈ Ei i = 1, . . . ,m

Since

aTi x ≤ bi for all ai ∈ Ei ⇐⇒ āTi x+ ‖P Ti x‖2 ≤ bi,

the robust LP problem is equiv. to

min cTx

s.t. āTi x+ ‖P Ti x‖2 ≤ bi, i = 1, . . . ,m

which is an SOCP.
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Probabilistically Robust LP formulation:

• Sometimes we may want 99.9 . . .% okay, rather than the worst case (worst case

can be quite worse, and yet it rarely happens).

• Robust LP formulation using probabilistic constraints:

min cTx

s.t. Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

where ai’s are modeled as random variables, and 0 ≤ η ≤ 1 is the minimum

probability requirement.

• Assume ai ∼ N (āi,Σi) (Gaussian distributed with mean āi and covariance Σi).

• As Prob(aTi x ≤ bi) = Φ((bi − āTi x)/
√

xTΣix), where Φ(z) = 1√
2π

∫ z

−∞ e−t
2/2dt,

the probabilistically robust LP can be formulated as

min cTx

s.t. Φ−1(η)‖Σ1/2
i x‖2 ≤ bi − āTi x, i = 1, . . . ,m

The above problem is an SOCP for Q−1(η) ≥ 0, or, equivalently, η ≥ 0.5.
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Robust Least Squares

Standard LS:

min
x

‖Ax− b‖22

Consider that there is uncertainty in ai:

A ∈ { Ā+ U | ‖U‖2 ≤ α } , A

and we only have knowledge of Ā & α.
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(Worst-case) robust LS formulation:

min
x

sup
A∈A

‖Ax− b‖2

For A = Ā+ U , ‖U‖2 ≤ α,

‖Ax− b‖2 = ‖Āx− b+ Ux‖2
≤ ‖Āx− b‖2 + ‖Ux‖2
≤ ‖Āx− b‖2 + α‖x‖2

The equality is shown to be achievable for some ‖U‖2 ≤ α.

The robust LS problem then becomes

min ‖Āx− b‖2 + α‖x‖2
⇐⇒ min t1 + αt2

s.t. ‖Āx− b‖2 ≤ t1, ‖x‖2 ≤ t2
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Robust Beamforming

Background: Minimum Variance Beamforming

Recall the average energy minimization design:

min
w∈CP

wHPw

s.t. wHa(θdes) = 1

Here P =
∑

i a(θi)a
H(θi), where θi are directions that are not of interest.
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• In the previous lectures, θi are chosen to be a discretized set of directions outside a

certain beamwidth.

• We can also set θi to be the interfering source directions, if we knew them.

• The resultant beamformer will then focus on minimizing energies at the interfering

source directions, resulting in better interference suppression than the sidelobe

energy minimization design.

• In practice, those interfering source directions are not known.

Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 12



ELEG5481 Signal Processing Optimization Techniques 7. Second Order Cone Program

Received signal model:

y(t) = a(θdes)s(t) +
K
∑

i=1

a(θi)ui(t) + ν(t)

If s(t) & ui(t) are uncorrelated and wide-sense stationary, and ν(t) is spatially white,

R = E{y(t)yH(t)}

= σ2
sa(θdes)a

H(θdes) +
K
∑

i=1

σ2
ui
a(θi)a

H(θi) + σ2
νI

R can be reliably estimated from y(t) via averaging: R̂ =
∑N

t=1
y(t)yH(t).
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The minimization problem

min wHRw

s.t. wHa(θdes) = 1 (∗)

is equiv. to

min
K
∑

i=1

σ2
ui
|wHa(θi)|2 + σ2

ν‖w‖22

s.t. wHa(θdes) = 1

which we minimize the output interference and noise power.

In the signal processing literature, (∗) is known as the minimum variance

beamformer design.
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Problem with imperfectly known steering vector

• Consider situations where there is uncertainty with the desired direction θdes, or the

desired steering vector a(θdes) is imperfectly known.

• Let a = a(θdes) for simplicity. The uncertain effect can be modeled as

a = ā− u

where ā is the true steering vector & u is the uncertainty.

• The min. variance beamformer design can be very sensitive to uncertainty in a .
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Robust Beamforming via SOCP [VGL03]

• Robust beamforming problem formulation:

min wHRw

s.t. |wH(a+ u)| ≥ 1, for all ‖u‖2 ≤ ǫ

• Or we can write

min wHRw

s.t. inf
‖u‖2≤ǫ

|wH(a+ u)| ≥ 1

• At first look this is a nonconvex problem.
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• By triangular inequality:

|wH(ā+ u)| ≥ |wH ā| − |wHu|
≥ |wH ā| − ǫ‖w‖2, ∀‖u‖2 ≤ ǫ (∗)

where we assume |wHa| > ǫ‖w‖2. (What happens if |wHa| ≤ ǫ‖w‖2?)

• Choose

u = − ǫej∠(wHa)

‖w‖2
w.

Then equality in (∗) is achieved. Thus

inf
‖u‖2≤ǫ

|wH(a+ u)| = |wH ā| − ǫ‖w‖2
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• The robust beamforming problem can be rewritten as

min wHRw

s.t. |wH a| − ǫ‖w‖2 ≥ 1

which is still nonconvex.

• We note the following: If w⋆ is a solution, then ejψw⋆ is also a solution for any

phase shift ψ.

• Without losing optimality, let us add additional constraints:

Re{wHa} ≥ 0, Im{wHa} = 0
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• By adding those constraints,

min wHRw

s.t. wHa ≥ 1 + ǫ‖w‖2
Im{wHa} = 0

• Finally, by the epigraph reformulation, the robust beamforming problem is rewritten

as a SOCP:

min t

s.t. ‖V w‖2 ≤ t, ǫ‖w‖2 ≤ wHa− 1

Im{wHa} = 0

where V is a square root factor of R (i.e., R = V HV ).
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Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 21



ELEG5481 Signal Processing Optimization Techniques 7. Second Order Cone Program

Transmit Downlink Beamforming

• The basestation (BS) has m antennas.

• It sends data to n mobile stations (MSs) each of which has 1 antenna.

• The BS uses transmit beamforming to simultaneously transmit signals to the n

MSs, over the same channel.
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. . . . . . . Basestations

Mobile station 1

Mobile station 2
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• Assuming frequency flat channel fading, the received signal at MS i at each time

instant may expressed as

yi = hTi x+ vi

hi ∈ C
m multiple-input-single-output (MISO) channel for MS i;

vi ∈ C noise;

x ∈ C
n BS transmitted signal vector, with xi being the tx signal of the ith

antenna of the BS.
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• The BS transmitted signal:

x =

n
∑

i=1

fisi = Fs

where

si ∈ C information carrying signal for MS i;

fi ∈ C
m the corresponding transmit beamforming vector.
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• Assume that E{|si|2} = 1 for all i, & E{|vi|2} = σ2
i .

• The SINR of MS i is

γi(F ) =
|hTi fi|2

∑

j 6=i |hTi fj |2 + σ2
i

• Problem: [BO02],[WES06] given a min. SINR requirement γo, find a

beamformer matrix F that minimizes the total transmit power:

min
n
∑

i=1

‖fi‖22

s.t. γi(F ) ≥ γo, i = 1, . . . , n
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• The constraints can be re-expressed as

1

γo
|hTi fi|2 ≥

∑

j 6=i
|hTi fj |2 + σ2

i (∗)

and w.lo.g. we can add extra constraints:

hTi fi ≥ 0 (∗∗)

• With (∗∗), (∗) can be re-expressed as
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• Hence, the transmit beamformer design problem can be cast as a SOCP:

min t

s.t. ‖[ fT1 · · · fTn ]T ‖2 ≤ t

hTi fi ≥ 0, i = 1, . . . , n
∥

∥
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• We may also consider the following design:

• Problem: given a power limit Po, find a beamformer matrix F that maximizes the

smallest (or worst-case) SINR:

max min
i=1,...,n

γi(F )

s.t.

n
∑

i=1

‖fi‖22 ≤ Po

• This problem is not convex. But it can be solved under a quasi-convex opt.

framework.
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